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Abstract: A methodology is proposed to automatically detect significant symbol associations in genomic databases. A new 

statistical test assesses the significance of a group of symbols when found in several genesets of a given database. To each pair of 

symbols, a p-value depending on the frequency of the two symbols and on the number of joint occurrences, is associated. All 

pairs with p-values below a certain threshold define a graph structure on the set of symbols. The cliques of that graph are 

significant symbol associations, linked to a set of genesets where they can be found. The method can be applied to any database, 

and is illustrated on the MSigDB C2 database. Many of the symbol associations detected in C2 or in non-specific selections 

correspond to already known interactions. On more specific selections of C2, many previously unknown symbol associations 

have been detected. These associations unveal new candidates for gene or protein interactions, needing further investigation for 

biological evidence. 
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1. Introduction 

Large-scale genomic databases have been developed for 

over a decade as catalogs of genesets [1,2]; a geneset is a list 

of genes/proteins, the expression level of which was found to 

be associated to some biological process, cellular component, 

metabolic function, type of cancer, etc. Examples include the 

KEGG database [3], MSigDB C2 to C7 [4], and those from 

the Gene Ontology Project [5]. The contents of genesets will 

be viewed here as symbols i.e. character strings without a 

priori biological meaning, and will be distinguished from the 

gene or proteins they represent. 

Parallel to the creation of databases, the question of 

building a full network of Protein-Protein Interactions (PPIs), 

or interactome, has also received a lot of attention [6–9]. De 

Las Rivas and Fontanillo [7] distinguish binary methods that 

look for pairwise associations, from co-complex methods that 

detect groups of more than two proteins. One seemingly 

simple co-complex method consists in listing geneset 

intersections in databases. Indeed, finding a given group of 

symbols in several genesets provides a reasonable heuristic 

for a possible PPI, to be validated by a subsequent biological 

study. 

Our goal here is not to discuss the biological relevance of 

co-complex PPIs, but instead to propose a new methodology 

to automatically detect in genomic databases the presence of 

such associations, without any prior biological knowledge. 

Our question is: how can symbol groups being present in a 

significant number of different genesets be systematically 

detected in a given database? The answer seems 

straightforward: in theory, it should suffice to list all possible 

geneset intersections 2 by 2, then 3 by 3, etc. The difficulty 

comes from combinatorial explosion: if there are p genesets, 

the number of geneset intersections is 2
p
 − p − 1, i.e. 2.9 × 

10
1421

 for the 4722 genesets of MSigDB C2. The list of all 

geneset intersections will remain forever out of reach. 

Systematically finding sizeable intersections in a given 

collection of sets has long been one of the main problems of 

datamining, since the introduction of the first frequent 
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itemset algorithms by Agrawal et al [10]: see [11–13] for 

general reviews, [14] for an application in the context of 

genomic profiling. However, we argue that algorithms that 

systematically detect the most frequent sets are not adapted 

to the present context. Indeed, the most frequent associations 

involve symbols present in many different genesets: these 

associations are the most conspicuous and well documented. 

Associations of relatively unfrequent symbols are potentially 

more interesting. This poses the problem of assessing the 

significance of a given intersection. 

Contrarily to existing algorithms such as that of Kirouac et 

al. [9], the method proposed here relies on a purely statistical 

approach. A new test has been defined: it computes a p-value 

for each symbol group common to a given collection of 

genesets. The test takes into account the frequencies of the 

different symbols in the database: an association of frequent 

symbols is less significant than an association of rare 

symbols in the same number of genesets. Considering a given 

group of symbols, the test statistic is the number of genesets 

it appears in. Under the null hypothesis of random 

occurrences, its distribution can be approximated by a 

Poisson distribution, using classical results on the so called 

“law of small numbers” [15]. The p-value is computed as a 

tail probability of the Poisson approximation. 

The test is used to define an undirected weighted graph 

structure for which vertices are symbols: each pair of symbols 

(edge) is weighted by its p-value in the association test. Thus 

p-values are viewed as distances between symbols: the more 

frequent the occurrence of the pair, the lower the p-value, and 

the closer the two symbols. Using this type of mathematical 

structure in genomics data mining is not new: see the review 

by Lee et al. [16]. Once the weights have been calculated, 

two procedures can be applied. One of them uses pairwise 

p-values as a dissimilarity to perform a hierarchical 

clustering of the set of symbols under consideration [17, 18]. 

The other consists in thresholding the weights to deduce a 

continuum of unweighted graphs on the set of symbols: a 

threshold h being chosen, an edge exists between two 

symbols if the p-value of the pair is smaller than h. It is then 

natural to consider as significant the maximal cliques of the 

thresholded graph [19]. Indeed, cliques are groups of 

symbols such that any two of them are connected in the graph, 

which is equivalent to saying that any two of them are 

associated in a significant number of genesets. Algorithmic 

complexity is a major difficulty here. Clique finding is a 

NP-hard problem, and listing all cliques of a reasonably 

dense graph is not feasible in practice beyond a few hundred 

vertices. In our case, the possibility to adjust the threshold is 

a crucial feature. The lower the threshold h, the sparser the 

graph. For a given database, h can be chosen such that the 

number of neighbors of each symbol (its degree in the graph) 

is smaller than 100, say. For such a sparse graph, the classical 

Bron-Kerbosch algorithm can be applied to the neighborood 

of each symbol [20]. This yields a list of all cliques of the 

graph. Each clique (significant group of symbols) is then 

examined to see if it appears in two or more genesets, then 

possibly completed by other symbols appearing in the same 

genesets; lastly, the association p-value of the whole group is 

computed. 

The procedure has been implemented in a R script [21] 

available online together with files of results. Examples of 

executions on MSigDB C2 [4] (referred to as C2 thereafter) 

and five selections from the same are given: see next section 

and additional files. When genesets cover many diseases or 

functions, such as those of C2, or even non-specific 

selections like all cancer-related genesets of C2, the majority 

of detected associations are compatible with known PPIs. In 

our view, this supports the intuition that significantly large 

geneset intersections do contain PPI information. On specific 

selections of C2, such as for instance genesets related to 

breast cancer, a majority of detected associations did not 

correspond to known PPIs. Further investigation should be 

made to assess their biochemical significance. We are aware 

that an algorithmic listing of significant associations does not 

necessarily imply that all listed groups correspond to 

meaningful PPIs. Such a listing must necessarily be 

expert-curated for biochemical validation. We are also aware 

that our specific selections of genesets are too restrictive to 

be completely meaningful. They are presented here only as 

an illustration of potential uses, hoping that the method could 

prove useful to disease-oriented interactomics [8]. 

2. Results 

Results of the in silico experiments that were conducted to 

assess the interest of the method are reported here. Two points 

had to be proved. The first point was that the information 

contained in large geneset intersections was compatible with 

established interactome knowledge. The second point was that 

significant geneset intersections such as detected by our 

method could contain previously unkown PPI information. In 

order to establish those two points, we have applied the 

method to C2, and five other databases, obtained by selecting 

in C2 those genesets with names matching one or more 

character strings. They will be referred to as C2Blast 

(character string “blast”), C2Breast (character string “breast”), 

C2Cancer (any character string related to cancer, such as 

“tumo”, “carci”, etc.), C2K (character string “KEGG”), 

C2Lymph (character strings “lymph” or “leuk”). 

To begin with, the application of the method to the 

different databases will be described. As a first step, the 

association graph must be explored by examining the degrees 

of symbols at different thresholds. Very frequent symbols do 

not necessarily have the highest degrees, since p-values for 

associations involving frequent symbols tend to be larger (see 

the “Association test” section). Table 1 shows, for a selection 

of twelve symbols, the frequencies, and the degrees at 

thresholds 10
−2

,…, 10
−10

 in the full database C2. Observe that 

COMP, which is present in 35 genesets of C2, has many 

more neighbors at threshold 10
−2

 than MAPK1 which is more 

frequent. On the contrary, at threshold 10
−6

 , MAPK1 still has 

21 neighbors, whereas COMP has only 8. The way the 

association test has been designed decreases the number of 

neighbors of very frequent symbols for low values of h. 
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However high numbers of co-occurrences (as in the case of 

MAPK1 with some of its neighbors) are still translated into 

very low p-values. 

The choice of a threshold h is left to the user. For statistical 

reasons, a significance threshold larger than 5% is not 

appropriate. For algorithmic reasons, a threshold such that the 

highest degree in the association graph is about 100 should be 

selected if possible. For each of the five databases, a threshold 

was chosen and the detection algorithm was run. The 

thresholds that have been applied to the six examples are 

shown on Table 2. The six lists of symbol associations are 

given as additional text files. The larger the number of 

genesets, the denser the association graph at a given threshold, 

thus the lower the threshold should be. 

Table 1. For symbols AKT1, GRB2, HRAS, MAPK1, PIK3CA, RAF1, SOS1, COMP, THBS1–4 and database C2, the table gives their frequency, and the number 

of neighbors at thresholds h = 10−2 , . . . , 10−10 . 

Symbols Frequency 
Neighbors at threshold h 

h = 10-2 h = 10-3 h = 10-4 h = 10-5 h = 10-6 h = 10-7 h = 10-8 h = 10-9 h = 10-10 

AKT1 221 70 53 45 31 28 22 16 13 8 

GRB2 216 89 63 51 38 28 23 19 16 14 

HRAS 224 76 49 33 21 15 14 14 13 12 

MAPK1 263 80 52 41 28 21 13 12 11 11 

PIK3CA 235 77 60 49 41 34 28 24 20 18 

RAF1 186 106 65 46 37 28 21 17 14 12 

SOS1 191 92 61 44 31 26 20 19 16 14 

COMP 35 724 366 147 59 8 1 1 0 0 

THBS1 163 7 0 0 0 0 0 0 0 0 

THBS2 86 92 27 9 6 3 2 2 0 0 

THBS3 23 213 26 6 2 0 0 0 0 0 

THBS4 37 100 13 3 0 0 0 0 0 0 

 

Table 2. Detected associations in C2 and the 5 selections given as examples. 

The number of genesets and the threshold at which the detection was made are 

given as columns 2 and 3. The lists of detected associations were sorted on 

numeric criteria: number of symbols per association smaller than 10 (column 

5), number of genesets larger than 2 (column 6) or both (column 7). The full 

lists are given as additional text files 

Selection genesets h All s<10 g>2 both 

C2 4722 10-15 659 500 689 500 

C2Blast 57 0.05 265 249 49 49 

C2Breast 159 10-2 1337 1044 763 628 

C2Cancer 948 10-5 924 828 924 828 

C2K 186 10-3 501 404 334 288 

C2Lymph 107 10-2 364 325 139 132 

The number of symbols and the number of genesets of each 

association varies. Fig. 1 shows a scatterplot of both quantities 

for the 828 associations detected at threshold 10
−5

 in C2Cancer. 

Similar plots were obtained on all selections. Associations 

represented on the bottom right corner correspond to large 

numbers of symbols common to few genesets. As an example 

coming from C2Cancer, the two genesets “Acevedo liver 

cancer up” (973 symbols) and “Acevedo liver tumor vs 

normal adjacent tissue up” (863 symbols) have 494 symbols in 

common. Here, the high rate of overlap indicates 

informational redundancy (the two geneset definitions are 

almost synonymous). This phenomenon is common to all 

databases: some of the associations detected by our method 

are very large groups of symbols, common to a small number 

genesets. We believe that such large intersections should be 

interpreted with caution, as the largest overlaps are most likely 

to result from direct informational redundancy between 

genesets rather than actual biological associations. On the 

contrary, associations in the top left corner of Fig. 1 involve 

fewer symbols common to many genesets. These symbols 

usually correspond to very common ‘jack-knife’ proteins 

(AKTs, COLs, ERKs, MAPKs,…) involved in many different 

cell functions and biological pathways. As an example, the 

highest two points on Fig. 1 correspond to pairs of collagens: 

COL1A1, COL1A2 found together in 25 genesets, and 

COL1A2, COL3A1 found together in 23 genesets. Actually, 

the three collagens COL1A1, COL1A2, COL3A1 are found 

together in 43 genesets of C2. This can hardly be considered 

as new biological information, but rather as biological 

redundancy. We shall argue in the discussion section that 

finding together symbols of the same family in some pathways 

may be biologically interesting, though not surprising. 

 

Figure 1. Detected associations in C2Cancer: 924 associations detected at 

threshold 10−5. For each association, the numbers of symbols (x-axis) and 

genesets (y-axis) involved are plotted. 
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Here is an example of both informational and biological 

redundancy. LOC652826 is present in 47 genesets of C2 (1151 

symbols out of the 21047 of C2 are locations). Out of those 47 

genesets, 46 have a name beginning with “reactome”. The 

intersection of those 47 genesets is made of LOC652826, 

PSMC6 and 36 other PSMs (proteasomes). Actually, 

LOC652826 is a synonym of PSMC6. Nevertheless, the pair 

LOC652826, PSMC6 is detected as significantly associated 

by our test (P= 5.8×10
−38

 ) and the intersection of the 47 

genesets is identified as a significant association by the 

algorithm. 

Both types of redundancy will be further illustrated by the 

following associations detected in C2K: AKT1, AKT2, and 

AKT3 found together in 30 genesets; MAPK1 and MAPK3 

found together in 46 genesets; PIK3CA, PIK3CB, PIK3CD, 

PIK3CG found together in 34 genesets; AKT1, AKT2, AKT3, 

GRB2, HRAS, MAP2K1, MAPK1, MAPK3, PIK3CA, 

PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, 

PIK3R5, RAF1, SOS1, SOS2 found together in 16 genesets. It 

is not surprising to see homologs 1,2,3 of v-akt murine 

thymoma viral oncogenes (AKTs) jointly appear in C2K 

genesets. The same can be said of mitogen-activated protein 

kinases (MAPKs) and phosphoinositide-3-kinases (PI3Ks). 

The largest association found in C2K involved 95 symbols, 

including 22 IFNs (interferons) and 47 ILs (interleukins). 

They were common to two genesets, “Cytokine cytokine 

receptorinteraction” “Jak stat signaling geneset”. This 

corresponds to a typical case of informational redundancy as 

most cytokine/cytokine receptor interaction trigger 

intracellular signals which are transduced through Jak/Stat 

cascades. The second largest association was that of 90 

symbols, including 14 ATPs (ATP synthases, H+ transporting), 

20 COXs (cytochrome c oxidases), 35 NDUFs (NADH 

dehydrogenase (ubiquinone)), 4 SDHs (succinate 

dehydrogenase complex), and 8 UQCRs 

(ubiquinol-cytochrome c reductase). Those 90 symbols were 

found in 4 genesets, named “Alzheimers disease”, 

“Huntingtons disease”, “Parkinsons disease”, and “Oxidative 

phosphorylation”. By contrast, this association has a higher 

informative biological significance. The three distinct 

neurodegenerative diseases do involve neuronal apoptosis, 

wherein a key step is defective mitochondial respiration, also 

known as oxidative phosphorylation. 

Here is a much less impressive association, still detected in 

C2K: COMP, THBS1, THBS2, THBS3, THBS4 found 

together in 3 genesets. It concerns relatively unfrequent 

proteins: THBS1 appears in 5 genesets, whereas COMP, 

THBS2, THBS3, and THBS4 do not appear in any other than 

the 3 genesets they all have in common. Among other 

interactome databases, we have chosen STRING 9.0 [22] as a 

reference, and systematically compared symbol associations 

detected by our method to STRING evidence views. The 

cartilage oligomeric matrix protein (COMP) is not signaled in 

STRING as biochemically linked with thrombospondins 

(THBSs). Yet, finding them together does have a biological 

interest. Indeed, COMP is not a thrombospondin, yet a close 

examination of its structure and functions evidences a link not 

detected by current algorithms or search robots: the COMP 

includes a thrombospondin-like domain. 

It can be considered that the potentially novel associations 

are likely to be found among those with a small enough 

number of symbols, and a large enough number of genesets. 

Thus the lists can be screened over numerical criteria. An 

example of screening (number of symbols smaller than 10, 

number of genesets larger than 2) appears on columns 4 to 6 of 

Table 2. After numerical screening, the remaining associations 

were tested in STRING 9.0 [22]. STRING distinguishes 

evidence of association according to neighborhood, gene 

fusion, cooccurrence, coexpression, experiments, databases, 

textmining, homology. We considered that two symbols were 

connected in STRING if at least one of the 8 links exists, i.e. if 

there exists at least one edge in the evidence view. The results 

only reflect the status at the date when comparisons were 

made. STRING is in constant evolution, and includes new 

interactions almost daily. Several of the groups found 

disconnected when the comparison was made, may have been 

connected since. Among the associations detected in the full 

database C2 at threshold h = 10
−15

, nearly all fell under 

informational and/or biological redundancy. Very few 

disconnected STRING graphs were detected in that 

experiment; examples include: PRLHR, DRD5 found together 

in 12 genesets; UQCRC1, SDHA found together in 23 

genesets; ZNF367, UHRF1 found in 24 genesets. In C2K and 

C2Cancer, a majority of detected associations also 

corresponded to STRING-connected graphs. In the other three 

(more specific) selections, a majority corresponded to 

disconnected, or even empty graphs. Here are two examples of 

STRING-disconnected associations from C2Breast (many 

more can be found in the corresponding additional file): 

ERBB3, MYB found together in 7 genesets; DSC3, KRT14, 

PDZK1IP1 found together in 6 genesets. Once again, 

algorithmic detection cannot be considered a proof that 

ERBB3 (v-erb-2 erythroblastic leukemia viral oncogene 

homololog 3) and MYB (v-myb myeloblastosis viral 

oncogene homolog) are functionally related, even though it 

has been shown that both genes are deregulated by mutations 

of the transcription factor TWIST in human gastric cancer 

[23]. 

To conclude this section, we mention another possible use 

of our statistical test. Once the p-values of joint appearances 

have been calculated for all pairs of symbols in a database, the 

matrix of p-values so obtained can be used as a matrix of 

dissimilarities to perform a hierarchical clustering. Several 

clustering methods have been discussed at length in the 

literature [17, 18]. It can be checked that clustering from the 

p-value matrix usually yields clusters which are coherent with 

already known biological information, when available. As an 

example, consider the association AKT1, AKT2, AKT3, 

GRB2, HRAS, MAP2K1, MAPK1, MAPK3, PIK3CA, 

PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, 

PIK3R5, RAF1, SOS1, SOS2 found in 16 genesets of C2K. A 

hierarchical clustering obtained through the single link 

algorithm showed that the clusters match known PPIs, and 

groups of proteins with the strongest biochemical relation 
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were correctly identified as homogeneous clusters. 

3. Discussion 

As for many other data mining tools, the objective of our 

method is to algorithmically reduce combinatorial explosion 

in searching for sizeable intersections from collections of 

genesets. Unlike existing frequent itemset searching 

algorithms [11–14], the goal here is not to list all groups of at 

least so many sets intersecting in so many items. This would 

output only very frequent symbols, excluding all others. 

Relatively small intersections of rather unfrequent symbols 

may be much more significant, and therefore should be 

enhanced. This is done by selecting intersections on their 

p-value from a statistical test, rather than on their sizes. 

Unlike in [9], the association graph that is deduced from 

testing pairs of symbols is not meant as the representation of 

an interaction network, but as the basis of a co-complex PPI 

searching method: the cliques of the graph should be tested 

as possible interaction candidates. The method can be applied 

to any database, and we believe that reducing generic 

databases to more specific genesets can lead to interesting 

lists of associations, small enough to be expert curated. 

Indeed, an algorithmically detected association cannot be 

accepted as biological evidence, but only as a possible 

candidate, selected on statistical evidence. 

Examining the examples of outputs given as additional 

files, one cannot fail to notice very large intersections of 

several genesets under similar names. For different reasons, 

linked to the way they were compiled, largely overlapping 

genesets have been included in most databases: this can be 

called ‘informational redundancy’. It can be controlled by 

algorithmically screening outputs on numerical criteria (e.g. 

eliminating too large intersections). Also, among detected 

intersections, many include genes belonging to the same 

family. The definition of our statistical test enhances 

significant associations of relatively unfrequent symbols, but 

does not remove conspicuous associations of very frequent 

symbols. Previously given examples include AKTs, COLs, 

MAPKs, PIKs, PSMs, etc. This is part of what could be 

called ‘biological redundancy’. Indeed it is not suprising to 

observe two members of the same family jointly appear in 

many different genesets. But is it completely uninteresting? 

We do not believe so and detail several arguments below. 

Associations involving redundant genes might define a 

functional group which is highly informative. As an example 

consider the ‘redundant’ association CD1A, CD1B, CD1C, 

CD1D, CD1E. These five structurally related glycoproteins 

have almost similar functions. But for biologists, ‘almost 

similar’ very often means ‘actually distinct’. Indeed, these 

five CD1s do mediate seemingly similar but very distinct 

immunological functions, related altogether to cell surface 

presentation of non-peptide antigens to T-lymphocytes. In 

short, CD1A presents a group of mycobacterial glycans, 

CD1B presents lipids, CD1C presents glycolipids and 

sulfatides, CD1D presents a ceramide and CD1E does not 

presents antigens but processes cytoplasmic phospholipids. 

Hence an association comprising several of the redundant 

CD1s is informative of a more global process involving 

immunity to non protein antigens (the so-called innate 

immunity). In addition, finding other non-CD1 genes in the 

same association is quite interesting for a biologist. It turns 

out that in C2, two genesets contain the five CD1s above, and 

also MME (membrane metallo-endopeptidase) and DNTT 

(deoxynucleotidyltransferase, terminal). 

We do not believe that associations involving functionally 

redundant genes necessary lack interest. The presence of 

‘redundant’ genes in some detected association does bring an 

information to the reader, as globally ‘redundant genes’ are 

never exactly redundant, due to evolutive speciation. In any 

metazoan genome, duplicated genes with the same initial 

function always evolve separately, and progressively acquire 

more specific functions along evolution, time, and selective 

pressure at the genic level. Hence ‘functional redundancy’ 

does not mean ‘non-novel’. Four examples will be given in 

different fields of biology. 

Example 1 (evolutionary developmental biology): One 

could quote the very first Toll genes which still control 

development in the fly, but were ancestrally duplicated 

several times leading to ten Toll-Like Receptor genes in the 

human genome (eleven in the mouse). None of these TLRs 

does exactly the same as in the original fly: roughly 

summarizing, they all control inflammation in mammals, 

although actually none of them does the same thing in this 

function (see Beutler and Hoffmann’s work on the activation 

of innate immunity that won them the 2001 Nobel prize in 

medicine). The same would apply to the conserved and 

functionally redundant NLR genes. Hence TLRs-comprising 

associations can be seen as biologically redundant but 

nevertheless have a different significance according to which 

TLR members are included. 

Example 2 (immunology): Consider two genes from the 

large subgroup of KLRs: KLRC1 and KLRK1. These two 

genes mediate the same ligand recognition in the same 

immune process (regulation of NK cell-mediated lysis of 

target cells), but they actually transduce opposed signals: 

KLRK1 activates cell lysis while KLRC1 inhibits it. Their 

dual presence in a clique would not mean the same thing 

(regulation of NK activity) than the presence of several of the 

redundant KLRK-like genes only (activation or inhibition). 

Actually, KLRC1 and KLRK1 are both present in seven 

different genesets of C2, together with KLRD1. 

Example 3 (neurobiology): Adenosine (dopamine, or other 

neuromediator) receptors expressed in animal brains, are 

functionally redundant: they encode for a vital receptor that 

receives and transmits a signal which contributes to the local 

tissue homeostasis and function. At the whole body scale, 

vital functions are fulfilled by a normally functional brain. 

Consider the four redundant adenosine receptor genes 

(ADORA1, ADORA2A, ADORA2B, and ADORA3). Their 

common presence in six different genesets of C2 is somehow 

puzzling, as these four genes are expressed in very different 

tissues (distinct promoter sequences), and transduce 

differently. ADORA2A and ADORA2B are coupled to Gs 
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transducing genes, whereas the two others are coupled, on the 

converse, to Gi transducing genes. Moreover two ADORAs 

open ion channels, the two others raise intracellular cAMP. 

Altogether, these four seemingly functionally redundant 

adenosine receptor GPCR are actually not so redundant. 

Example 4 (pharmacology): Similar points could be made 

using many other examples. Most of the Ig’s superfamily, of 

the very large TNFR superfamily, of the GPCR superfamily, 

of the olfactory receptor (OR) superfamily did evolve by 

serial duplication/ mutation/ neofunctionalization and 

functional speciation (among other processes) which led to 

the presently puzzling functional redundancy in most of the 

eukaryote genomes. For example genes encoding for the 

various isoforms of PI3K are grossly depicted as functionally 

similar isoforms, yet each of these is involved in very 

different signalling according to the tissues and cell types in 

which they are expressed, (leading to their very selective 

targeting for the therapy of specific cancers). 

Frequent genes in databases correspond to ‘jack-knife 

genes’ (MYCs, ERKs, MAPKs, PI3Ks…) which are involved 

in many different cell functions and biological pathways. 

Indeed duplication of such genes along evolution has led to 

gene families with all possible strengths of penetrating 

phenotypes, from hypomorphics to functionally distinct 

mutants. Undoubtedly on the long term, gene duplication also 

drove to speciation of functions and functional divergence, as 

proposed long ago by S. Ohno [24]. Multifunctional genes 

evolving from an ancient unique function to multiple 

neofunctionalization, by various possible evolutive processes 

(see [25, 26]) are numerous in our genome and represent a 

major source of ‘functionally redundant’ associations. By 

contrast, the currently monofunctional genes present 

duplications and appear in ‘functionally redundant’ 

associations far less frequently. This observation is not trivial, 

and links blatantly the significance of biologically redundant 

associations to molecular evolution (see e.g. [27]). 

4. Conclusions 

We have defined an algorithm that automatically outputs 

symbol associations by searching for significant geneset 

intersections in a database. The method is based on a 

statistical test, used to define a graph structure among 

symbols. It has been applied to MsigDB C2 [4] and five 

databases selected from the same; two of them had little 

specificity (C2K, C2Cancer), the three others were more 

specific (C2Apop, C2Blast, C2Breast, C2Lymph). On each 

database, a list of symbol associations, small enough to be 

expert-curated, was obtained. The detected associations were 

compared to STRING evidence views. Out of the 

associations coming from non-specific databases, a majority 

had connected graphs in STRING evidence views; this 

validates the intuitive idea that significant geneset 

intersections correspond to biologically relevant interactome 

information. Among specific databases, many detected 

associations had disconnected STRING graphs; this may be 

an indication that new interactome information can be 

extracted. Therefore, we believe that the proposed method 

can be added to the data mining tools for searching 

protein-protein interactions. 

5. Methods 

5.1. Association Test 

The association test will be defined in this section. A basic 

assumption is that there are no duplicates in genesets: each 

symbol appears at most once in a given geneset. The 

distinction between symbol and protein or gene is crucial: it is 

sometimes the case that two symbols actually correspond to 

the same gene, even though they are treated here as different 

(an example has been given in the Results section). 

Consider a database made of p genesets of different sizes: 

the i-th geneset contains li symbols, assumed to be all distinct. 

Denote by nj the frequency of symbol number j, i.e. the total 

number of genesets it appears in. The assumption of no 

duplicates implies that the sum of symbol frequencies is equal 

to that of geneset sizes. Let us denote by N that sum: N is the 

total number of symbol occurrences in the database. The null 

hypothesis of our test (lack of information) is that the genesets 

have been constituted by independently including the different 

symbols. Under that null hypothesis, the probability that 

symbol number j appears in geneset number i can be estimated 

by (nj ×li )/N. Consider a set of k different symbols, labelled 

j1,…,jk. If the appearances are assumed to be independent, the 

probability that the k symbols are found together in geneset i 

must be: 

pi = (li/N)k (nj1×…×njk) 

The total number of genesets where the group can be found 

is the sum over all genesets, of independent Bernoulli random 

variables with parameter pi: the i-th random variable is 1 if the 

group is present in the i-th geneset (which occurs with 

probability pi ), 0 else. For k large enough and even for large 

genesets, the probabilities pi are small. By the law of small 

numbers [15], the distribution of the sum of a large number of 

Bernoulli random variables with small parameters can be 

approximated by a Poisson distribution, the parameter of 

which is the sum of all probabilities. The sum of all pi’s can be 

interpreted here as the expected number of genesets the group 

should be found into, if symbol appearances were independent. 

Let us denote it by λ. 

Assume now that the group of symbols j1,…,jk has been 

found in x different genesets. The p-value associated to this 

observation is the right tail probability at x (probability to be 

larger or equal to x) for the Poisson distribution with 

parameter λ. Observe that λ is proportional to each njh. So 

when the frequency of symbols increases, λ increases too, and 

so does the tail probability for a given number of occurrences. 

This is why associations of very frequent symbols are 

considered less significant by the test. 

In our method, p-values must be calculated for each pair of 

symbols in the database, which may seem prohibitive as far as 

computing time is concerned. Let us say that the p-values of 
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all pairs containing symbol number j must be calculated: here 

is how the algorithm has been implemented. Firstly, the 

geneset sizes li , the symbol frequencies nj , the total number of 

occurrences N , and the sum of squares Σ(li/N)
2 

can be 

precalculated with negligible cost, using the function table of 

R. Then the database is reduced to those genesets containing 

symbol number j, making it much smaller. The reduced 

database is then analyzed: the symbols it contains are those 

which can be found together with symbol number j. The 

number of times they occur in the reduced database is the 

number of joint occurrences of the corresponding pair in the 

full database. The function table outputs a table of joint 

frequencies of pairs, labelled with those symbols paired with 

symbol number j. Using the precalculations, a table for the 

corresponding Poisson parameters λ is made and Poisson tail 

probabilities are calculated at low computing cost. This has 

been implemented in the function neighbor.symbols from 

the spa.r script available online. That function is repeatedly 

applied to all symbols in the function database.graph. 

Even for the largest databases available to us, its total 

execution time is of the order of the hour on a PC. The results 

can be repeatedly used for different graph structures, as will be 

explained in the next section. They can be automatically saved 

as a R data file and recalled for future use. 

5.2. Association Graph 

Once all pairwise p-values have been calculated, they are 

viewed as a weighted graph structure, symbols being taken as 

vertices of the graph. Observe that if two symbols cannot be 

found together in any geneset, the corresponding pairwise 

p-value is 1. Two symbols with a small pairwise p-value can 

be seen as neighbors: the smaller the p-value, the closer the 

neighbors. 

Let h be chosen, positive and smaller than 0.05. Those 

pairwise p-values smaller than h define an undirected graph, 

called the association graph at threshold h. In that graph, two 

symbols are joined by an edge if the number of genesets were 

the pair can be found is significantly high at threshold h. The 

number of neighbors of a symbol, i.e. its degree in the graph, 

decreases as the threshold decreases. 

For a small threshold h, it is natural to consider the cliques 

of the association graph at threshold h, i.e. groups of pairwise 

connected vertices [19, 20]. Any clique containing a given 

symbol, is necessarily included in the set of neighbors of that 

symbol. If the number of neighbors is relatively small (smaller 

than 100, say), then all maximal cliques in the set of neighbors 

can be listed by the Bron-Kerbosch algorithm in reasonable 

computer time [20]. The maximal.cliques function of the R 

package igraph by Csardi and Nepusz [28] was used. 

Maximal cliques can then be tested to check whether they 

appear in a significant number of genesets as a whole. It is 

natural to complete all detected maximal cliques by those 

symbols appearing in the same genesets. Once all maximal 

cliques have been detected and completed, duplicates are 

eliminated, the association test is applied to each completed 

clique, and the results are returned as a list (cf. Additional 

files). 
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